Muscle contractions, AICAR, and insulin cause phosphorylation of an AMPK-related kinase.
نویسندگان
چکیده
We hypothesized that AMP-activated protein kinase-related kinase 5 (ARK5)/novel kinase family 1 (NUAK1), an AMP-activated protein kinase (AMPK)-related kinase that has been found to be stimulated by protein kinase B (Akt), would be expressed in rat skeletal muscle and activated by electrically elicited contractions, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), or insulin. We verified expression of ARK5 in muscle through RT-PCR and Western blot. Cross-reactivity of ARK5 immunoprecipitates with antibodies against phospho-AMPK was increased by approximately 30% by muscle contractions and approximately 60% by incubation of muscle with AICAR. AMPK was not detected in the ARK5 immunoprecipitates. Despite the apparent increase in phosphorylation of ARK5 at a site essential to its activation, neither contractions nor AICAR increased ARK5 activity. For muscles from animals injected with saline or insulin, we probed nonimmunoprecipitated samples in sequence for phosphotyrosine (P-Tyr), ARK5, and phosphorylated substrates of Akt (P-AS) and found that the ARK5 band could be precisely superimposed on phosphoprotein bands from the P-Tyr and P-AS blots. In the band corresponding to ARK5, insulin increased P-Tyr content by approximately 45% and cross-reactivity with the antibody against P-AS by approximately threefold. We also detected ARK5 in phosphotyrosine immunoprecipitates. Our data suggest that increased phosphorylation of ARK5 by muscle contractions or exposure to AICAR is insufficient to activate ARK5 in skeletal muscle, suggesting that some other modification (e.g., phosphorylation on tyrosine or by Akt) may be necessary to its activity in muscle.
منابع مشابه
Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle.
Insulin and contraction increase GLUT4 translocation in skeletal muscle via distinct signaling mechanisms. Akt substrate of 160 kDa (AS160) mediates insulin-stimulated GLUT4 translocation in L6 myotubes, presumably through activation of Akt. Using in vivo, in vitro, and in situ methods, insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR all increased AS160 phospho...
متن کاملActivity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
Activation of AMP-activated protein kinase (AMPK) by exercise and metformin is beneficial for the treatment of type 2 diabetes. We recently found that, in cultured cells, the LKB1 tumor suppressor protein kinase activates AMPK in response to the metformin analog phenformin and the AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have also reported that LKB1 ac...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملActivation of AMP kinase enhances sensitivity of muscle glucose transport to insulin.
Evidence has accumulated that activation of AMP kinase (AMPK) mediates the acute increase in glucose transport induced by exercise. As the exercise-induced, insulin-independent increase in glucose transport wears off, it is followed by an increase in muscle insulin sensitivity. The major purpose of this study was to determine whether hypoxia and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuran...
متن کاملAMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits.
AMP-activated protein kinase (AMPK) is a heterotrimeric protein that regulates glucose transport mediated by cellular stress or pharmacological agonists such as 5-aminoimidazole-4-carboxamide 1 beta-d-ribonucleoside (AICAR). AS160, a Rab GTPase-activating protein, provides a mechanism linking AMPK signaling to glucose uptake. We show that AICAR increases AMPK, acetyl-CoA carboxylase, and AS160 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005